References
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Matter 159, L1–L7 (1996).
Chang, M.-T., Rosenfeld, P., Lu, S.-L. & Jacob, B. Technology comparison for large last-level caches (L3Cs): low-leakage SRAM, low write-energy STT-RAM, and refresh-optimized eDRAM. In 2013 IEEE Proc. 19th Int. Symp. High Performance Computer Architecture (HPCA) 143–154 (IEEE, 2013).
Kato, Y., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).
Wunderlich, Kaestner, J. B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrmam, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).
Hao, Q. & Xiao, G. Giant spin Hall effect and switching induced by spin-transfer torque in a W/Co40Fe40B20/MgO structure with perpendicular magnetic anisotropy. Phys. Rev. Appl. 3, 034009 (2015).
Melnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).
Fan, Y. et al. Magnetisation switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).
DC, M. et al. Room-temperature perpendicular magnetization switching through giant spin–orbit torque from sputtered BixSe(1–x) topological insulator material. Nat. Mater. https://doi.org/10.1038/s41563-018-0136-z (2018).
Teo, J. C. Y., Fu, L. & Kane, C. L. Surface states and topological invariants in three-dimensional topological insulators: application to Bi1–xSbx. Phys. Rev. B 78, 045426 (2008).
Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).
Hirahara, T. et al. Topological metal at surface of an ultrathin Bi1–xSbx alloy film. Phys. Rev. B 81, 165422 (2010).
Nishide, A. et al. Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Phys. Rev. B 81, 041309(R) (2010).
Taskin, A. A. & Ando, Y. Quantum oscillations in a topological insulator Bi1–xSbx. Phys. Rev. B 80, 085303 (2009).
Taskin, A. A., Segawa, K. & Ando, Y. Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi1–xSbx. Phys. Rev. B 82, 121302(R) (2010).
Ueda, Y., Khang, N. H. D., Yao, K. & Hai, P. N. Epitaxial growth and characterization of Bi1–xSbx spin Hall thin films on GaAs(111)A substrates. Appl. Phys. Lett. 110, 062401 (2017).
Zhu, L. J., Nie, S. H. & Zhao, J. H. Recent progress in perpendicularly magnetized Mn-based binary alloy films. Chin. Phys. B 22, 118505 (2013).
Bruno, P., Dugaev, V. K. & Taillefumieret, M. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).
Yasuda, K. et al. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 12, 555–559 (2016).
Ludbrook, B. M., Dubuis, G., Puichaud, A.-H., Ruck, B. J. & Granville, S. Nucleation and annihilation of skyrmions in Mn2CoAl observed through the topological Hall effect. Sci. Rep. 7, 13620 (2017).
Scharf, B., Matos-Abiague, A., Han, J. E., Hankiewicz, E. M. & Žutić, I. Tunneling planar Hall effect in topological insulators: spin valves and amplifiers. Phys. Rev. Lett. 117, 166806 (2016).
Li, P. et al. Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy. Nat. Commun. 7, 12688 (2015).
Kawaguchi, M. et al. Current-induced effective fields detected by magnetotransport measurements. Appl. Phys. Exp. 6, 113002 (2013).
Meng, K. K. et al. Modulated switching current density and spin–orbit torques in MnGa/Ta films with inserting ferromagnetic layers. Sci. Rep. 6, 38375 (2016).
Meng, K. K. et al. Anomalous Hall effect and spin–orbit torques in MnGa/IrMn films: modification from strong spin Hall effect of the antiferromagnet. Phys. Rev. B 94, 214413 (2016).
Ranjbar, R., Suzuki, K. Z., Sasaki, Y., Bainsla, L. & Mizukami, S. Current-induced spin–orbit torque magnetisation switching in a MnGa/Pt film with a perpendicular magnetic anisotropy. Jpn J. Appl. Phys. 55, 120302 (2016).
Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).
Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).
Han, J. et al. Room temperature spin–orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).
Wang, Y. et al. Room temperature magnetization switching in topological insulator–ferromagnet heterostructures by spin–orbit torques. Nat. Commun. 8, 1364 (2017).
Sahin, C. & Flatté, M. E. Tunable giant spin Hall conductivities in a strong spin–orbit semimetal: Bi1–xSbx. Phys. Rev. Lett. 114, 107201 (2015).
Zhu, X.-G. et al. Three Dirac points on the (110) surface of the topological insulator Bi1−xSbx. New J. Phys. 15, 103011 (2013).
Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).
König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).