A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching (2024)

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Matter 159, L1–L7 (1996).

    Article Google Scholar

  2. Chang, M.-T., Rosenfeld, P., Lu, S.-L. & Jacob, B. Technology comparison for large last-level caches (L3Cs): low-leakage SRAM, low write-energy STT-RAM, and refresh-optimized eDRAM. In 2013 IEEE Proc. 19th Int. Symp. High Performance Computer Architecture (HPCA) 143–154 (IEEE, 2013).

  3. Kato, Y., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article Google Scholar

  4. Wunderlich, Kaestner, J. B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article Google Scholar

  5. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article Google Scholar

  6. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article Google Scholar

  7. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrmam, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article Google Scholar

  8. Hao, Q. & Xiao, G. Giant spin Hall effect and switching induced by spin-transfer torque in a W/Co40Fe40B20/MgO structure with perpendicular magnetic anisotropy. Phys. Rev. Appl. 3, 034009 (2015).

    Article Google Scholar

  9. Melnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article Google Scholar

  10. Fan, Y. et al. Magnetisation switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Article Google Scholar

  11. DC, M. et al. Room-temperature perpendicular magnetization switching through giant spin–orbit torque from sputtered BixSe(1–x) topological insulator material. Nat. Mater. https://doi.org/10.1038/s41563-018-0136-z (2018).

  12. Teo, J. C. Y., Fu, L. & Kane, C. L. Surface states and topological invariants in three-dimensional topological insulators: application to Bi1–xSbx. Phys. Rev. B 78, 045426 (2008).

    Article Google Scholar

  13. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article Google Scholar

  14. Hirahara, T. et al. Topological metal at surface of an ultrathin Bi1–xSbx alloy film. Phys. Rev. B 81, 165422 (2010).

    Article Google Scholar

  15. Nishide, A. et al. Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Phys. Rev. B 81, 041309(R) (2010).

    Article Google Scholar

  16. Taskin, A. A. & Ando, Y. Quantum oscillations in a topological insulator Bi1–xSbx. Phys. Rev. B 80, 085303 (2009).

    Article Google Scholar

  17. Taskin, A. A., Segawa, K. & Ando, Y. Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi1–xSbx. Phys. Rev. B 82, 121302(R) (2010).

    Article Google Scholar

  18. Ueda, Y., Khang, N. H. D., Yao, K. & Hai, P. N. Epitaxial growth and characterization of Bi1–xSbx spin Hall thin films on GaAs(111)A substrates. Appl. Phys. Lett. 110, 062401 (2017).

    Article Google Scholar

  19. Zhu, L. J., Nie, S. H. & Zhao, J. H. Recent progress in perpendicularly magnetized Mn-based binary alloy films. Chin. Phys. B 22, 118505 (2013).

    Article Google Scholar

  20. Bruno, P., Dugaev, V. K. & Taillefumieret, M. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).

    Article Google Scholar

  21. Yasuda, K. et al. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 12, 555–559 (2016).

    Article Google Scholar

  22. Ludbrook, B. M., Dubuis, G., Puichaud, A.-H., Ruck, B. J. & Granville, S. Nucleation and annihilation of skyrmions in Mn2CoAl observed through the topological Hall effect. Sci. Rep. 7, 13620 (2017).

    Article Google Scholar

  23. Scharf, B., Matos-Abiague, A., Han, J. E., Hankiewicz, E. M. & Žutić, I. Tunneling planar Hall effect in topological insulators: spin valves and amplifiers. Phys. Rev. Lett. 117, 166806 (2016).

    Article Google Scholar

  24. Li, P. et al. Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy. Nat. Commun. 7, 12688 (2015).

    Article Google Scholar

  25. Kawaguchi, M. et al. Current-induced effective fields detected by magnetotransport measurements. Appl. Phys. Exp. 6, 113002 (2013).

    Article Google Scholar

  26. Meng, K. K. et al. Modulated switching current density and spin–orbit torques in MnGa/Ta films with inserting ferromagnetic layers. Sci. Rep. 6, 38375 (2016).

    Article Google Scholar

  27. Meng, K. K. et al. Anomalous Hall effect and spin–orbit torques in MnGa/IrMn films: modification from strong spin Hall effect of the antiferromagnet. Phys. Rev. B 94, 214413 (2016).

    Article Google Scholar

  28. Ranjbar, R., Suzuki, K. Z., Sasaki, Y., Bainsla, L. & Mizukami, S. Current-induced spin–orbit torque magnetisation switching in a MnGa/Pt film with a perpendicular magnetic anisotropy. Jpn J. Appl. Phys. 55, 120302 (2016).

    Article Google Scholar

  29. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article Google Scholar

  30. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article Google Scholar

  31. Han, J. et al. Room temperature spin–orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    Article Google Scholar

  32. Wang, Y. et al. Room temperature magnetization switching in topological insulator–ferromagnet heterostructures by spin–orbit torques. Nat. Commun. 8, 1364 (2017).

    Article Google Scholar

  33. Sahin, C. & Flatté, M. E. Tunable giant spin Hall conductivities in a strong spin–orbit semimetal: Bi1–xSbx. Phys. Rev. Lett. 114, 107201 (2015).

    Article Google Scholar

  34. Zhu, X.-G. et al. Three Dirac points on the (110) surface of the topological insulator Bi1−xSbx. New J. Phys. 15, 103011 (2013).

    Article Google Scholar

  35. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article Google Scholar

  36. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article Google Scholar

  37. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article Google Scholar

Download references

A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching (2024)

References

Top Articles
Latest Posts
Article information

Author: Barbera Armstrong

Last Updated:

Views: 6757

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Barbera Armstrong

Birthday: 1992-09-12

Address: Suite 993 99852 Daugherty Causeway, Ritchiehaven, VT 49630

Phone: +5026838435397

Job: National Engineer

Hobby: Listening to music, Board games, Photography, Ice skating, LARPing, Kite flying, Rugby

Introduction: My name is Barbera Armstrong, I am a lovely, delightful, cooperative, funny, enchanting, vivacious, tender person who loves writing and wants to share my knowledge and understanding with you.